Mosaic Analysis with Double Markers in Mice
نویسندگان
چکیده
We describe a method termed MADM (mosaic analysis with double markers) in mice that allows simultaneous labeling and gene knockout in clones of somatic cells or isolated single cells in vivo. Two reciprocally chimeric genes, each containing the N terminus of one marker and the C terminus of the other marker interrupted by a loxP-containing intron, are knocked in at identical locations on homologous chromosomes. Functional expression of markers requires Cre-mediated interchromosomal recombination. MADM reveals that interchromosomal recombination can be induced efficiently in vivo in both mitotic and postmitotic cells in all tissues examined. It can be used to create conditional knockouts in small populations of labeled cells, to determine cell lineage, and to trace neuronal connections. To illustrate the utility of MADM, we show that cerebellar granule cell progenitors are fated at an early stage to produce granule cells with axonal projections limited to specific sublayers of the cerebellar cortex.
منابع مشابه
Extensions of MADM (Mosaic Analysis with Double Markers) in Mice
Mosaic Analysis with Double Markers (MADM) is a method for generating genetically mosaic mice, in which sibling mutant and wild-type cells are labeled with different fluorescent markers. It is a powerful tool that enables analysis of gene function at the single cell level in vivo. It requires transgenic cassettes to be located between the centromere and the mutation in the gene of interest on t...
متن کاملMosaic analysis with double markers (MADM) in mice.
The human brain comprises more than 100 billion neurons, each of which has an elaborate shape and a complex pattern of connections. To untangle this complexity, it is often useful to visualize one neuron at a time. Mosaic analysis with double markers (MADM) is a genetic method for labeling and manipulating individual neurons. This method was developed in mice and it allows simultaneous labeling...
متن کاملKv1.1-dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers.
Megencephaly, or mceph, is a spontaneous frame-shift mutation of the mouse Kv1.1 gene. This mceph mutation results in a truncated Kv1.1 channel α-subunit without the channel pore domain or the voltage sensor. Interestingly, mceph/mceph mouse brains are enlarged and – unlike wild-type mouse brains – they keep growing throughout adulthood, especially in the hippocampus and ventral cortex. We used...
متن کاملMosaic analysis with double markers reveals cell-type-specific paternal growth dominance.
Genomic imprinting leads to preferred expression of either the maternal or paternal alleles of a subset of genes. Imprinting is essential for mammalian development, and its deregulation causes many diseases. However, the functional relevance of imprinting at the cellular level is poorly understood for most imprinted genes. We used mosaic analysis with double markers (MADM) in mice to create uni...
متن کاملApplication of Molecular DNA Markers (STRs) in Molecular Diagnosis of Down Syndrome in Iran
Down syndrome is one of the most common causes of mental retardation observed in approximately 1/700 live birth. The use of two or more STR markers related to chromosome 21 facilitates the diagnosis of Down syndrome within about six hours from the collection of the samples. This is the first study has been performed in Iranian population to assess the diagnostic value of using small tandem repe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 121 شماره
صفحات -
تاریخ انتشار 2005